ASYMPTOTIC FLOW OF A MONATOMIC DILUTE GAS IN NARROW GAP CHANNELS

P. A. Novikov and L. Ya. Lyubin UDC 533.72:541.182

The asymptotic flow of a dilute gas in gap channels is constructed within the ES-
model. Flow with "slow" condensation (sublimation) on the channel flow is con-
sidered as an example.

The well-known quasidiffusive approximation [1] is used to analyze radiative or free-
molecular transport in elongated channels. In [2-4] the corresponding approach was extended
to transport problems in the narrow gap between parallel plates. Many technological processes
occur, however, for finite values of the number Knyg. In the present study we construct the
asymptotic flow of a dilute gas in the gap between parallel plates, whose scale L in the gap
symmetry plane is quite large in comparison with the molecular mean free path, so that the
number Kny can vary within wide limits (0 < Kng < =), In the stationary case some constant
field of macroscopic field parameters is established in thegap . If, in considering inter-
nal flows of a dilute gas, we confine ourselves to the linear approximation, corresponding
to numbers M << 1 and a small relative temperature variation across the gap and at distances
of order L in the symmetry plane, so that the square of these parameters can be neglected,
then the basic kinetic equation of the ES-model [5] is written in the form

HVT v aaf = a(fr—1). (1)
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In the linear approximation the integral of inverse collisions is
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Twice repeated subscripts imply summation.

If the flows are accompanied by transverse heat transport, the distribution.function
f has no symmetry with respect to the plane X3 = 0. In the linear statement under consider-
ation, however, this function can be represented by a perturbed absolutely Maxwellian distri-
bution of the form

o . u?
F="To(l+ os+ @), fooz'WEXP( QRTO)' (3)

and the total problem can be decomposed into two independent ones for the symmetric % and
antisymmetric ¢, perturbations, respectively. We restrict ourselves to treating the sym-
metric problem only.

It is assumed that H/L = ¢ << 1. Therefore, as in the analysis [6] of continual flows
of the Hill—Show type, it is advisable to introduce the dimensionless coordinates §,, £,, C,
and specifically isolate the transverse velocity component [v = (u + wea)ho'l/z, h, = (2-
RT,)" '] anfl the derivative with respect to {. The local Maxwellian distribution f, appearing
in the kinetic equation (1) can be replaced in the linear approximation by the expression

fo=foo[1+v+(u?+w2—%)r+2<'¢2>¢7+2<w>w. ()

For simplicity it is assumed that the molecules reflected and emitted by the walls in
a coordinate system fixed at the plates have a Maxwellian distribution corresponding to the
wall temperature Ty(&,, £,). Consider initially the auxiliary problem of a flow of a dilute
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gas in the region —= < §;, £, < =, [{| £ 0.5, assuming that the Maxwellian distribution param-
eters of molecules flying from the wall ny, Ty are given, i.e.,

— 7 18/2 -
f(r, b= £05, @=0)=n,() [ﬁ;}i] exp[—h, (7)), 5)

The first and second order moments are sought of the distribution function, character-
izing the gas flow at the arbitrary point r, = r + ley (|| 5_0.5). As basis parameters of
the absolutely Maxwellian distribution f,, we select n, = nyu(r,), T, = Ty(r,). If the per-
turbation Qg is represented in the form

q):vw +(u2+w2—1r5)1w+¢)1 (6)
then the following equation is obtained for the function @
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and homogeneous boundary conditions
D, {= 405 w=1)=0. (8)

If one formally integrates the latter equation from the lower and upper walls, respec-
tively, to the arbitrary point u, 'df, = u, !df, = ew 1df, assuming that the moments appearing
in it are known functions of coordinates, than, taking into account condition (8) at the walls,
we obtain . : 3
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If vw(;') and Tw(;') are M times differentiable functions of their arguments, and, conse-
quently, can be approximated by segment power series of the form

o TR w8 Gt e, 0
W)= 7 VT T o

ij!
then the asymptote of the flows considered is constructed as follows. Multiplying the last
equation (9) by n-3/2y exp (-V2?), where ¢ = 1, u, w, wu, u?, u?, w2, uju,, and_integrating
the relations obtained over the whole space of dimensionless velocities V = hyv, we obtain
a closed system of integral equations in the corresponding moments, which can, in turn, be
represented in the form of asymptotic expansions in powers of the small parameters Kng,

vo = Kz [N{OY? (v,)) -+ NP (e,,)] + K [NIA® (ev,,) +

, (10)

+ NPA )l + O(KnD), (U = Uy (ev) + UV (e7a) +
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Here A = V2, and the upper subscript e = i + § — 1, where i, j correspond to the expansion
terms vij, Tij. In constructing this asymptote one uses the power series expansions of the

first and second order moments, appearing in the integrand expression of Eq. (9), relative
to the point r,. For example,
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The scalar coefficients denoted by capital letters are solutions of the following uni-
versal systems of integral equations (being independent of the temperature and pressure dis-

tributions in the gap):
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The properties and tables of the integrals Ip(x) are given in [7, 8]. Differentiating
with respect to [ the second equation (12), the second and third equations (13), the second
equation (14), and using each time the available integrodifferential equations, we obtain
the following relations:
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The functions UV(°) and (WU>V(°) coincide with the corresponding parameters of the
Poiseuille flow problem for the ES-model. Substitution of the first relation (15) into the
first equation (12) shows that Uy‘\°’/ = U, + U,,, where U, is the solution, found by various
numerical methods [9-11], of the integral equation
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which corresponds to the Kruk model, while U,; must satisfy the analog integral equation
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The functions with subscript 1 satisfy integral equations, differing from (12)-(15) only
by the free terms. The moment expansion coefficients (11) are found as follows. Numerical
solution of the integral equatlons (16) and (17) gives the function U,\°’ and the dimension-
less velocity (discharge) Q averaged over the height of the gap, the tangential stress
<WU>v(°) is calculated by the first equation (15), while the proportional transverse velocity
coefficient W,\!/ is obtained by integrating the right hand side of the second relationship
(15) with the use of the symmetry condition Wv(l (0) = 0. The coefficients Nv(l), Hsav(l)’
I, 0(1) are found by simultaneous solution of the three corresponding equations (13) and using
the functions already calculated U, °) and Wv(l), while the coefficient Hllv(l) is found from
the last equation (13). The coeff1c1ents <WU>,,'2J and U,'2/ are found by subsequent solution
of the integral equations (14) with the use of coefficients calculated earlier.

Several results of the calculation are given in Tables 1 and 2. The integral equations
were solved by an iteration method.

The asymptote constructed above describes the flow of the dilute gas in the gap beyond
the regions near the cylindrical surface elements blocking the gap or sealing it along the
perimeter, near the open section of the gap and the discharge line of molecule emission in-
tensity by the walls, i.e., the discharge line of the wall temperature Ty or the number
density ny of molecules flying from the wall. Boundary layers, which are not considered here,
are formed in these specific regions.

-

The relations obtained above can be used to calculate flows outside these regions. Thus,
in particular, one can treat flows between infinite plates, whose separate portions emit,
absorb, or only reflect molecules, while the corresponding characteristics vary along the
plates sufficiently smoothly or haveweak jumps, capable only of generating uniformly small _
perturbations of the original parameters. The determination of the functions vy (r) and ty(r)
is a major step in solving these problems.

We consider specifically the example of vapor flow in the gap, generated by sublimation
or condensation at the walls. Using the commonly adopted scheme [12-15], based on the con-
cept of a condensation coefficient B, characterizing the fraction of trapped surface phase
transition molecules of the whole number contained in the flow incident on it, then one can
write for the density of reflected surface molecules [14, 15]:

—2Vw j

Ny = Hgyp (1 —B) (1 — ), = | 1
r I1—f1—w, p Brn.. V oRT- (18)
By (11) the vapor mass density flow toward the wall is

j = ]* V 2RTw ’ ]* = Ny,Me Kn[_, (Ws;l)A‘Vw -+ W.‘ATw);=0’5. (19)

The total number density of molecules flying from the walls is determined from the ex-
pressions [14, 15] ny = Bngy + npy = neywll — u(l — B)1. For a constant density of vapor flow
(3 = j, = const), corresponding to the approximation of a homogeneous distribution of thermal
loads over the wall surfaces
1—BV'a j _
mBV 2RT, (20)

Ny == ew(Tw)+
By the Clapeyron—Clausius law
Ty A 1 1
N (Tp) == Al (T exp | — — .
(T) = roo () 2 exp |2 (- ] (21)

For "slow" condensation (sublimation) (|Ty, — T,| << T,) and by (1) expression (20) can
be represented in linearized form:

Ny — ng; _ X(Tw - TO)’

' 1—-p | P
n% = (1 - %) ndy + _.T-ﬁ— ._r]ni R, 0 oy =1 (To)s

0 . .
TSNS SR/ P S
L= Ty + p m 2RTY % RT,
The function W, (1)(0 5, a) = —Qy, T( )(a)(ZKnH) 1. Thus, following linearization we

obtain from relation (19) and 1nhomogeneous Helmholtz equatlon, describing the plate temper-
ature field for j = const:
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TABLE 1. Dependence of the Functions —U,(°) and —Q,{¢)

on the Parameter o

n_Us)U)
@ 4 \Q‘(?O)
0,0 0,1 0,2 0,3 0,4 0,5
0,01} 1,5812 | 1,5753 | 1,5573 { 1,5252 | 1,4743 | '1,3800 | 1,5250
0,1 1,0853 | 1,0785 | 1,0575 | 1,0203 | 0,9616 | 0,8537 | 1,0203
0,2 | 0,9850 | 0,9773 | 0,9537 | 0,9120 | 0,8465 | 0,7268 { 0,9121
0,5 | 0,9144 | 0,9045 | 0,8741 | 0,8206 | 0,7374 | 0,5884 | 0,8214
1,1 0,9437 | 0,9297 | 0,8867 | 0,8119 | 0,6972 | 0,4975 | 0,8143
1,5 | 0,9913 | 0,9745 | 0,9235 | 0,8349 | 0,7001 ; 0,4690 | 0,8383
2 1,0614 | t,0412 | 0,9801 | 0,8745 | 0,7151 | 0,4460 | 0,8795
3 1,2178 | 1,1910 | 1,1097 | 0,9701 | 0,7619 | 0,4191 | 0,9785
5 1,558 | 1,5153 | 1,3927 | 1,1844 | 0,8787 | 0,3932 | 1,2006
7 1,9065 | 1,8519 | 1,6874 | 1,4089 | 1,0049 | 0,3798 | 1,4337
10 2,4466 | 2,3705 | 2,1413 | 1,7555 | 1,4353 | 0,3686 | 1,794l

TABLE 2. Dependence of the Functions —U(°) and —Q (?)

on the Parameter o

—U,(L.O)
. ; —a
0,0 0,1 0,2 0.3 0.4 | 0,5

0,01| 0,9357 | 0,9323 | 0,9236 | 0,9073 | 0,8815 | 0,8337 | 0,9072
0,1 0,7010 | 0,7061 0,6041 | 0,6728 0,639 0,5798 0,6730
0.2 | 0.6786 | 0.6737 | 0.6588 | 0,6320 | 0.5925 | 0.5213 | 0.6333
0,5 | 0,6805 | 0,6822 0,6597 | 0,6209 | 0,5613 0,4596 0,6222
1,1 0,7809 0,76905] 0,7328 0,6703 0,5761 0,4200 0,6736
1,5 | 0.8510 | 0,8351 | 0,7910 | 0,7134 | 0,5573 | 0,4075 | 0,7179

2 0.9409 | 0,9224 | 0,8665 | 0.7703 | 0,6277 | 0,3973 | 0,7766 .
3 1.1231 | 1,0976 | 1,0201 | 0,8879 | 0,6934 | 0,33849 | 0.8978
8 1,4895 1,4498 1,3295 1,1260 ¢ 0,829 | 0,3722 1,1437
7 1,8562 1,8021 1,5341 1,3637 | 0,9675 | 0,3651 1,3899
10 2,4003 | 2,3335 | 2,1050 1,7212 1,1717 | 0,3584 1,7611

ATw + BlTw _'T— BZTO = 0)
2i ﬂgw . fo I— Cu
B = e AR Jo = e B'Z = — B]_s
VU e (@) Y mnewV 2RT, Cy
R "SR ST B+ (1 —PV x ju

= S Ly, o= =
R B+ +2(1—BV = J,

(D)

T vP v ()
2 w w
wp=1—p+co, Hpg=1—y—0C, yV=-—"T—"=1——@G
' Y Puyt " (@)

(22)

In the two simplest cases, corresponding to a planar channel (/ = 0) of length 2L open
on both sides (£, = £ = t1) or a gap between parallel disks (! = 1) of radius r, = L (open

along the contour £; = § = 1), the operator

AL
&

& l
g

&

d

’

(23)

and the plate temperature field, symmetric with respect to £ = 0, is determined by the ex-

pression

To(®) = T () FIE ) — ——55 Ty(1 — R (E o)l

Fo(& ¢) = %E(IZ_E;)_’
1
Fo (§, Cy) == _c(%((c_;%z_;
1

Cx

Fi(Eic) ==

Fr(§ o) =

M for B1 > 0,
olcy
lo(c;-8)
—_  for B < 0.
Io(cy) '

(24)

Here c¢,v/[B;|, and J,(x) and I,(x) are the Bessel functions of real and imaginary arguments,
respectively (they must be distinguished from the integrals Jy(x) (14)).
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Equation (24) makes it possible to estimate local surface heating by sublimation, as
well as the possibilities of breakdown of material technological processes. To account for
jumps of hydrodynamic parameters at the gap boundary one must investigate the "boundary layer"
near the surface £ = 1; for low intnesity j, these jumps will be unimportant, while the vari-
ation of these parameters in the limit of a narrow (e << 1) channel gap can be quite large.

NOTATION

A, molecular mean free path; L, flow linear scale in the median gap plane; H, gap height;
Knp, = A/L; KnH = A/H; € =H/L; £, distribution function; f, and f,,, local and absolute Maxwell dis-
tributions, h = (2RT)"*; R, universal gas constant; T, local temperature; x,, X,, rectangular co-
ordinates in thexnedlan plane; x;, distance from median plane; n, molecular number density;m, molec-
ular mass; v=v el-fvzezi-vses-(u-kwe )h'l/z—Vh {Z,vectorof1nstantaneousnmlecularveloc1ty,
EJ —xjL7 (=1, 2); § = %305 r =Fje; + Eyey, r; =1 + Leg; V= el(aljg ) + e, (8/88,);

=9V%; v=n-~— nO/no, T =T~ T,/Ty; ej, unit vector of the xj axis; a = /7H/3X' v, =

vipl) - vu(r), To(r,) = T(rl) = tulr)s Vo = <D>g5 My = vy + o= 2/3Ku?_+ w5 M4 = Pij-
(r1")/pu(r) — 84301 + M(r") s Hl = <u1_4>0, Mgy = <Wuydgs <wu>0 = Hayey (y =1, 2); <uy =
Uy, <W> = <Wdy3 <Ad, = Ae~u? ‘W ddv: r' =r + e(u/w)zc - C'); M= |<v>|e”1; 4, sound of
speed; and ngy(Ty), equilibrium value of the molecular number density for wall temperature_
Ty (on the saturation line). Subscripts: w, at the wall; 0, at the point ry; and e;, e,, ej,
unit vector corresponding to the axis x,, x;, xj.
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